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The article presents an analysis of tensile flow of profiled fibers under noniso- 
thermal conditions. The effect of various factors on the shaping process is also 
analyzed. 

The shape of the cross section of man-made fibers affects many of their properties: 
sorptional, their suitability for dying, abrasion resistance, thermal properties, gloss, etc. 
[1-3]. Most of the authors dealing with the question of changing the shape provide an analy- 
sis of the experimental results [i, 3, 4], and only Zyabitskii [2] suggested a model of change 
of shape of fibers with elliposidal section. 

In investigating shaping, we did not take the profile of the drawing die as the initial 
configuration but the effective dimensions of the cross section of the jet, determined with 
distention taken into account. The analysis of three-dimensional flow in the drawing zone is 
substantially simplified by taking into account the condition I >> s~TF~from which it follows, 
in particular, that the curvature of the surface of the jet in the longitudinal direction is 
much smaller than transversely. In consequence of this the radial component of the forces 
of aerodynamic friction is negligibly small. The environment does not take part hydrodynam ~ 
ically in providing a change of shape (shaping by the dry method). In the inertialess ap- 
proximation the Navier--Stokes equations, describing the flow in the cross section of the jet, 
are linear. This enables us to view the velocity field as the superposition of flows due to 
uniaxial tension and to the action of capillary forces on the surface [5]. Thus the examined 
problem of changing shape in drawing profiled fibers is divided arbitrarily into two problems: 
the first is the isochoric change of shape of a cylindrical jet of viscous liquid under the 
effect of capillary forces; the second is uniaxial isochoric drawing of the jet in the zone 
of shaping. 

Let the contour of a fiber with star-shaped section be approximated by the expression 

m 

R* * '  2 = qo ~ q~ cos nZq, (1) 

where Z = ~/%. Under the effect of capillary forces, the contour of the fiber R* tends to 
assume the shape of a circle with the radius ~ and then q~ § 0, q~ § ~-/~. If we divide 
both sides of expression (i) by S~, we obtain 

m 

= qo § ( 2 )  
n = l  

where qo = q~/~7~,  qn = q~v~7S/S. From the e q u a t i o n  o f  c o n t i n u i t y  we o b t a i n  the  f o l l o w i n g  
e q u a t i o n  o f  c o r r e l a t i o n  be tween  qo and qn [ 6 ] :  

4 q': (3) 
n ~  [ 

We assume that viscosity over the cross section is uniform. The forces of inertia are much 
smaller than the forces of viscous friction. In addition, assume that ~, ~, S do not depend 
on time. 

To determine qn (l~n~m) as a function of time we use the equations of dynamics in 
Lagrange's form [6], and we regard the parameters qn as generalized coordinates of the system 
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dU dD 
Oq,. Oqn ' n = 1, m, (4) 

w h e r e  qn ffi d q n / d x ,  r = ( t O / U ) / ' ~ .  

On a c c o u n t  of the symmetry, we will confine ourselves to examining the sector 0~-~0 
with the length of the fiber equal to unity. The potential energy is determined by the inte- 
gral 

j' 1 OR ~ t12 

0 

Confining o u r s e l v e s  to the first two terms of the expansion of the integrand into a series, 
we obtain approximately 

~ nt 

U = qo --~ § T ~ Zn2q~" (5 )  

To determine the Rayleigh functions, we have to know the velocity field in the cross sec- 
tion. The Navier--Stokes equation has the form [7] 

V~(VZr = O. (6 )  

To attain correspondence with (2), we will seek the function ~ in the form 

Cn = [,~ (1") sin Zn,p. 
If we substitute (7) into (6), we obtain a differential equation for fn: 

srlV r I .  § 2rff'.'" - -  (1 + 2nzZ 2) rZln § (1 -;- 2"fZ 2) rf~ + nzZ z (nzZ 2 - - 4 ) f .  = O. 

(7) 

(8) 

From t h e  s o l u t i o n  o f  t h e  E u l e r  e q u a t i o n  ( 8 ) ,  t a k i n g  t h e  c o n d i t i o n s  r = 0 ,  v r = 0 ,  3 V r / 3 r  = 0 
into account, we obtain for the function ~ [8]: 

~ = C,rnZ+2sinZnq~ 

The constant Cn is determined from the condition that the radial velocity for r = i coincides 
with the velocity assumed in expression (2) [5, 6]. Thus the function of flow is determined 
b y  t h e  e x p r e s s i o n  

m 

-- ~ Zn q"r"Z ' ~ s inZn% 
II~= | 

The Rayleigh function is determined by the integral 

I ~o 

D : 4 \ or ] dr ~ r Ocp r dq)rdr, 
0 0 

w h e r e  v r ; - - ( 1 / r ) ( ~ q J / ; ~ o ) ,  V~o = ~qJ/~r .  I f  we i n t e g r a t e ,  we o b t a i n  

Substituting expressions (5), 
first order 

tn 

D = n_~_~ ~/~,(Zn § 1). (9) 
Z Z -  

(9) into (4), we obtain a system of differential equations of 

dq. ZZn z 

dx 4 (nZ --[- 1) 
(io) 

The solution of (I0), with the condition T = O, qn = qn, o taken into account, has the form 

[ n~Z2 ] (I!) 
q,~---q..oexp 4 ( n Z +  1) ~ , n== 1 . . . . .  m. 

Thus  t h e  s o l u t i o n  o f  t h e  p r o b l e m  o f  t h e  c h a n g e  o f  s h a p e  o f  a c y l i n d r i c a l  j e t  o f  v i s c o u s  
liquid under the effect of capillary forces has the form 
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Fig. i. Dependence of the dimensionless 
height of the ray on the dimensionless time 
of change of shape: I) for configuration 
(a); 2) for configuration (b); 3, 4) exper- 
imental points [4] for G = 4.17.10 -5 and 
8.33.10 -s kg/sec, respectively. 

q.,oexp 4 (nZ ~- I) cos nZ% (12)  
I I~I  

w h e r e  q ,  i s  a f u n c t i o n  o f  ~ and i s  d e t e r m i n e d  i n  a c c o r d a n c e  w i t h  (3)  and  ( 1 1 ) .  I t  c a n  be  
seen from (12) that with an increase of the number of rays Z the rate of change of shape 
increases. 

Figure I shows the dependence of the characteristic of the profile ~ = (R+--R-)/(R~ - 
R~) on x for the cross sections presented in Fig. 2. When x > 0.8 for profile a and when 
T > 1.3 for b, there prevails the regular regime of change of shape, and there we may con- 
fine ourselves in calculations to the first term of the trigonometric polynomial (12). The 
rate of change of shape [9] depends on the number of rays 

d l n l R - -  11 Z 2 

o~ 4 ( Z +  1) 

The results of numerical analysis of expression (12) for the star-shaped profile used 
by GrSbe and Vers~umer [4], and for the fibers obtained by drawing dies in the shape of a 
circle with five rectangular grooves [3] are shown inFig. 2a and b, respectively. As initi- 
al configuration of profile a the profile of the jet at the outlet from the die was taken. 
The contour was approximated by a section of a Fourier series (6 terms) by the 12-point 
method. In addition, the figure shows the profiles of the radial velocities of points of 
the surface for the instant �9 = 0. The velocity of the surface was determined by differen- 
tiating expression (12) with respect to x. Thepoints lying in the acute angles of the sec- 
tion, where the largest curvature is found, have the highest velocity. The form of the 
theoretical profiles agrees qualitatively with the experimental results of [3, 4]. 

The investigation shows that the degree of transformation of the profile is character- 
ized by the dimensionless time of change of shape. This characteristic is universal and may 
be used for evaluating the change of shape of fibers of any configuration. In particular 
the magnitude of T characterizes the final configuration of the profile, and therefore the 
next problem is the calculation of T under the conditions of freezing of the drawn fiber. 

Let us examine part of the shaping path with length dx. The time withinwhich a fiber 
passes this part is dt = dx/v. Flow on the part dx is isochoric. The increment of dimen- 
sionless time of change of shape is 

'"~v dx. (13) 

The obtained differential equation enables us to determine T if we know the dependences 
of o, ~, v, S on the distance, therefore it has to be supplemented by the equations of motion 
and heat exchange of the fiber in the zone of drawing. 
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Fig. 2. Capillary transformation of fibers with different 
profiles in dimensionless representation: a) profile used in 
[41; b) in [3]. 

In accordance with the theory of A. Zyabitskii, the balance of forces acting on the 
fiber [2]: 

d (Sp~x) _ G dv n P  . . . .  ~- pgS 0 
dx dx . . . .  (14) 

includes the forces: of rheological resistance d/dx(SPxx), of inertia G(dv/dx), of aerody- 
namic friction HPxx,s, and of gravity pgS. We neglect the forces of surface tension in the 
longitudinal direction. 

At present there do not exist any investigations of aerodynamic friction and heat ex- 
change of profiled fibers; we therefore use the results obtained for circular fibers, and 
introduce the equivalent diameter of profiled fibers. 

The stress in consequence of aerodynamic friction is determined as 

! 
t%,s =-~pov2C.- 

where Cf = A Re Y. The characteristic linear dimension in Re is the equivalent diameter 

4S 2 / O (15) 
apv Y 

where = - - ,  H = 2(9 ~,i  qil. I., t r  ] +  . . . . .  , 

When fibers are shaped, the change of viscosity of the polymer with temperature is 
usually so great that the effect of nonlinearity of the flow considerably decreases. We 
assume that the tensile stress Pxx depends en the gradient of velocity and temperature 

Px~ = 3~ ~ x '  where ~ = ~0 exp To 

t ak ing  i t  in  the  f i r s t  approximat ion t h a t  T ru ton ' s  r e l a t i o n  [2] i s  c o r r e c t  fo r  l o n g i t u d i n a l  
viscosity. 

We assume that the convective mechanism of heat exchange predominates. Then for an 
element of the path dx long, the area of heat releasing surface with a view to the effect of 
ribbing amounts to Hdx [i0]. The heat balance equation, without taking the effects of crys- 
tallization and dissipation into account, has the form 

OCp --dT = _ ~ (Y -- To) ~ (16) 
dx 

The thermal effect due to the work of the capillary forces is negligible. Thus, for the 
temperature of polyamide fiber to rise by I~ profiled fibers have to have dimensions 
measuring hundredths of a micron, which is commensurable with the dimensions of macromole- 
cules. 
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The heat-transfer coefficient is determined from the equation [2] 

Nu =-- B Rel~. 

The characteristic dimension in Nu and Re is determined in accordance with (15). 

Equations (14) and (16) contain the criterion of configuration ~ which characterizes the 
effect of ribbing due to the rays. Consequently, the process of shaping affects both the 
dynamics of motion of the fiber in the zone of drawing and the intensity of its cooling. 

We introduce the dimensionless parameters: :X = x/l, V = V/Vo, 0 = (T -- Tc)/(To -- Tc). 
Then Eqs. (13), (14), (16) assume~the form .... i !i~ 

F a Ret~EFV ~ ~l~:-t~o 
r '  y~ 

V 
GrR~(To--T~) (0 -i- To--To ) (17) 

where 

+Re~(Vr + Re2V~V~"~-i-~ [ ' ~  / 1 
~. To 

V' =::~ F, 0 ' .  Pe~ ~l~2_~0 ' 
Gz 

' I1 -T 0(To-- ,)-!-Tc., 

pro[ 2 " - -  3v, V "  pGvo , / voG g; Re~= ~ ; R e 2 = = - - v c  | /  ~ ; W e - -  �9 Fr~=--~,-. 

Gz OC. 1//" zoo 
= --l-f~-~B-- ; ~ = Ap,,l ,oG 

A prime denotes the derivative with respect to X. Equations (17) were obtained on the assump- 
tion that 0, o, E, Cp do not depend on the temperature. The boundary conditions for the sys- 
tem (17) are: 

X ~ 0 ,  ~ = 0 ,  V =  1, 0 =  1; X== 1, V==K, whereK=vl/vo. (18) 

A numerical analysis of the system (17), (18) was carried out by Euler's method on a 
"Nairi-3" computer. Adequacy was verified by comparing the calculated data with the experi- 
mental results of [4]. Its authors investigated the cross sections of polyamide-6 fibers 
extruded from dies with star-shaped openings. The fiber passed over a certain path length 
in air (l = 0.04-2.62 m), and then it was rapidly cooled in a liquid bath. With increasing 
path length in the air the cross sections became ever more circular. The calculations were 
carried out for the conditions: ~o = 102 Pa.sec; c = 3.6.10 -2 N/m; To = 548~ T c = 303~ 
B = 0.325; E = 41.7 kJ/mole; 8 = 0.3; A = 0.65; ~ =-0.7; vl = 9.167 m/sec. The results of 
thecalculations are presented in Fig. i. A comparison of the experimental and theoretical 
results shows that there is satisfactory agreement. 

Figure 3 shows the distribution of various parameters over the length of the drawing 
zone. The calculations were carried out for the case Z = 2.62 m, G = 4.167-10 -5 kg/sec. It 
can be seen from the drawing that the most intense change of shape occurs in the direct 
vicinity of the die where the dwelling time is relatively long (the axial velocity is low) 
and the viscosity of the molten material is smallest. The process of changingshape proceeds 
more rapidly than the process of freezing. The fiber passes the path from the zone of in- 
tense shaping to the freezing point at high velocity, and regardless of the strong decrease 
of transverse dimensions, the profile of the fiber changes only slightly becausevlscosity 
continuously increases, and the dwelling time is short. 

Khan [3] expressed the assumption that the capillary effects of transforming the pro- 
file can be reduced by increasing the speed of delivery. An analysis of Eqs. (17), (18) con- 
firms this assumption. For instance, if the speed of delivery is increased 12 times, it 
leads to a decrease of T by 10%. There is a very strong dependence of �9 on the initial 
velocity of the jet. Calculations showed that if Vo is reduced by half, it leads to a de- 
crease of T by a factor of 5.5 (vl and G are constant). This is due to the fact that with 
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zone. 

reduced initial velocity the dwelling time in the shaping zone decreases. Thus, the larger 
the cross section of the die is, the better is the shape of the profiled fibers retained. 
Retention of the shape of the fibers is also enhanced by increasing the activation energy 
and reducing the initial temperature of the melt. 

The initial configuration of the fibers is greatly affected b~ the process of outflow 
from the die. Even if there is no distention (characteristic of high delivery speeds), the 
internal elastic stresses accumulated in the passage through the die may substantially change 
the configuration of the cross section of the fibers in the drawing zone. Determination of 
the initial profile of fibers entails considerable difficulties. 

NOTATION 

S, cross-sectional area; l, length of the drawing zone; R*, R, dimensional and dimen- 
sionless radius of the surface, respectively; q~, qn, dimensional and dimensionless gener- 
alized coordinates of the system, respectively; n, number of the harmonic; Z, number of rays 
in the cross section of the fiber; 2T0, spread angle of one ray; U, dimensionless potential 
energy; D, dimensionless Rayleigh function; T, dimensionless shaping time; qn, generalized 
velocity; ~, function of flow; r, T , cylindrical coordinates; f, function of the radius; C, 
constant; Vr, v~, velocity components; qn,o, values of the parameters qn at the instant 

= 0; o, surface tension; t, time; ~, shear viscosity; 6, dimensionless height of a ray; R-, 
R +, minimum and maximum running radius of the cross section, respectively; R~, R~, minimum 
and maximum radius of the cross section, respectively, at the instant T = 0; V =, Laplace 
operator; x, X, longitudinal dimensional and dimensionless coordinate, ~ respectively; v, V, 
dimensional and dimensionless axial velocity, respectively; ~o, viscosity at the temperature 
To; E, activation energy; R~, universal gas constant; To, T, initial and running absolute 
temperature, respectively; Tc, absolute ambient temperature; G, weight flow rate of the poly- 
mer; Pxx, tensile stress; Pxx,s, shear stress in consequence of aerodynamic friction; H, 
length of the circumference of the fiber; g, acceleration of gravity; p, Cp, density and heat 
capacity, respectively, of the material of the fiber; 8, dimensionless temperature of the 
fiber; 0c, Xc, ~c, density, thermal conductivity, and kinematic viscosity, respectively, of 
the environment; vo, initial axial velocity; e, heat-transfer coefficient; d, equivalent diam- 
eter; Re, Reynolds number; Rez, Reynolds number for the fiber, Re=, Reynolds number for the 
environment; We, Weber number; Fr, Froude number; Gz, Graetz number; Nu, Nusselt number; ~, 
dimensionless parameter depending on the shaping conditions; K, real rate of drawing; A, B, 
8, u constants; ~, criterion of configuration; P, gradient of axial velocity; v~, speed of 
delivery; m, number of generalized coordinates. 
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CURVED FLOW OF A VISCOUS LIQUID IN AN AXIRADIAL CHANNEL 

Yu. E. Karyakin UDC 532.542 

The motion of a viscous liquid is an axiradial channel with curving of the flow 
is investigated with the aid of the implicit method of splitting according to 
spatial variables. The effect of the Reynolds number and of the intensity of 
the curving on the formation of regions of reverse flows is established. 

The nature of the flow of a liquid or gas in turbine channels and various kinds of vor- 
tex installations depends largely on the initial curving of the flow and the regularity of 
its change. It was established [I] that even when a model of ideal gas in axiradial channels 
is used, regions with reverse flow may be obtained. The disposition and intensity of these 
regions are determined by the flow parameters at the inlet. 

Tret'yakov and Yagodkin [2] investigated viscous curved flow of liquid in annular chan- 
nels. They showed that the intensity of the curvature of the flow has a substantial effect 
on the magnitude of the frictional surface tension and the formation of zones of reverse 
flows. 

The present work is an investigation of curved flow of a liquid in axiradial channels 
on the basis of the Navier--Stokes equations. 

Let us examine the steady motion of a viscous incompressible liquid in an axiradial 
channel whose meridional section is formed by some piecewise smooth curved lines AB, BC, CD, 
and AD (Fig. i). The z axis is the axis of symmetry of the channel. 

We use a system of cylindrical polar coordinates, We assume that in the plane of the 
channel section there exists some pole O (Re, Zo) for which the following correlation be- 
tween the cylindrical (R, ~, z) and cylindrical polar coordinates (r, ~f,, 0) of an arbitrary 
point M (Fig. i) exists: R = Re -- r cos 0, ~=~, z = Zo + r sin 0, where @ is the azimuth 
angle. 

The boundaries AD, AB, BC, and DC of the meriodional channel section are specified by 
the equations e = el(r), r = rx(e), e = e2(r), r = r2(e), respectively. All these functions 
have to be piecewise smooth. 

We assume that the flow is axisymmetric, and then we write the dimensionless Navier-- 
Stokes equations of the examined laminar motion of an incompressible liquid in a system of 
cylindrical polar coordinates in the form 

u Ou Ou uv 

V- + -  
1 [ A u - -  t 1 + s i n  zO 

Re ~ ~ 7  m / U 
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wz sinO ::: 1 Op , 
R r aO 

(1) 
2 c)v t' 1 cos 0 ~ sin 0 ] 
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